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ABSTRACT 
A method is developed for the design of finite-difference smoothing and filtering operators which meet pre- 

determined specifications, and which are applicable to  automatic computing  machinery. The general technique is to 
build  complicated operators from the simplest types.  The necessity for smoothing  predicted fields of stream functions 
before inverting  the balance equation for  heights of isobaric  surfaces is brought  out. 

1. INTRODUCTION does not affect the mean value of a field of infinite extent, 

Numerical weather prediction, making use of finite 
differences and digital computers, has  invariably led to 
amplification of high frequency components in the final 

- 1 
z*=Pzf+Fj ( 1 - P ) ( ~ f - l + ~ f + l )  (1) 

product-amplification beyond physical reality. An  ex- 
cess  of short-wavelength components detracts from the 
appearance of the product,  is annoying to  analysts,  and 
can be downright misleading to  the uninitiated.  A 
method of constructing filtering, or "smoothing", oper- 
ators was devised by  the  author [l], which have been 
successfully  employed in operational practice to eliminate 
short-wavelength components from fields of meteorological 
variables. In  one aspect of operational numerical weather 
prediction, it has proven necessary in the interests of 
accuracy to filter out  the short-wavelength component's. 
Section 6 will deal with this. 

2. THE SMOOTHING ELEMENT 

First of all, let a smoothing element be defined. The 
smoothing element will be the building block of more 
complicated smoothing operators. We shall take  as  the 
smoothing element the simplest of one-dimensional 
symmetrical centered finite difference operators which 

Isst, part in this series will appear 10. a future issue. 
'For Part I see Monthly Weather Reeiew, October 1957, pp. 329-332. The  third, and 

4mm-68-1 

where z is the field to  be smoothed. The subscripts refer 
to points equally spaced in  the independent variable, 2, 
and consecutively numbered with increasing x. For 
imminent conceptual convenience, we will rewrite equa- 
tion (1). 

where 
v = l - p .  

The parameter v which is twice the weight given the two 
outer  points, will be called the smoothing element index, 
since it completely defines a given operator of form 
(1) or (2). 

It will be convenient to  think of the dependent variable, 
z ,  within the region of interest  as consisting of the sum of 
trigonometric (cosine, say)  functions of varying ampli- 
tudes, phases, and wave numbers. According to this 
concept, the wavelengths need not be  restricted  to multi- 
ples of the finite-difference increment  in x, nor need the 
number of waves for a given component within the region 
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FIGURE 1.-The field of smoothing element  index in (u, cos kh)- 
space. u is the  ratio of smoothed to unsmoothed amplitude, 
k is the wave number, h is mesh  length, L is wavelength. 

of interest be integral. Adopting this concept, we  will 
investigate the effect of a smoothing element on individual 
cosine components. For example, consider the com- 
ponent 

z,=C+A COS k(xi-Z) 

where 5 is an  arbitrary  constant related to  the phase and 
k is the wave number; i. e., k=2 TIL, where L is the 
wavelength of the component. Trigonometric identities 
yield 

z*l=C+A COS k(x:+,”Z)=C+A COS k(x,-Z+h) 
= C+ A cos kh cos k (x, - Z)  - A  sin kh sin k (x, - Z )  

zf-l=G+A COS k(x,-1”f)=C+A COS k(Z,-Z-h) 
=C+A cos kh cos k(x:-Z)+A sin kh sin k(xi-Z) 

where h is the length of the finite difference increment 
in x. If these identities  are  substituted  into  equation (2), 
we have, after some rearrangements, 

Z:=C+[l-v(l-cOs kh) ]A  COS k(x:-Z) 

Thus, the smoothing element ( 2 )  changes neither the 
wave number nor the phase, but changes the amplitude 
of each component by  the  factor 

- 
A a=-=l-v(1-COS kh) 

where A and 2 are  the amplitudes of the field  before and 
after smoothing, respectively. 

Figure 1 shows the field  of v in (a, cos kh)space. 
It is to be noted that  an index of  zero does not change 
the field, and negative indices lead to  an increase in 
amplitude of all components. Positive indices lead to  an 
algebraic decrease in amplitude of all components, 
although indices greater than  unity lead to amplifying 
oscillations.  We thus  have a conceptual basis in  the sign 
of the smoothing element index for “zero” smoothing, 

A (3) 

“negative” smoothing, and “positive” smoothing. It is 
to be noted  further  that a smoothing element is not 
highly selective, so would be a poor filtering operator by 
itself. For example, if  we were to filter out of a field 
components of wavelength 2h (cos kh=-1) by means of 
one smoothing element, components of length 10h (cos 
kh= 0.8) would be reduced by  as much as 10 percent (see 
the line corresponding to v=0 .5 ) .  

3. THE DESIGN OF MULTI-ELEMENT OPERATORS 
In  order to improve on the selectivity of the 3-point 

smoothing element, a smoothing operator  must be  in- 
vented which involves more points. The problem in the 
design of such an  operator  is  to fit it to  stated specifica- 
cations. The approach to  this problem set  forth in this 
article is based on the use of more than one smoothing 
element (2). Successive application of several smoothing 
elements, with indices vo,  vl,  v2, va, . . . , v, results in the 
final ratio of smoothed amplitude  to unsmoothed ampli- 
tude of 

m=n 

m=0 
z=u@~u2u~ . . . u,= n [1-vm(1-c0s kh)] (4) 

according to  equation (3). Equation (4) is a polynomial 
in (cos kh), with n+ 1 degrees of freedom, represented by 
the  arbitrary  constants vo, vl,  vz, . . . v,. In principle, 
one could specify a single-valued curve of 2 against 
(cos kh) and express it in  terms of a product of factors of 
form (3). One would then know precisely how to ac- 
complish the smoothing desired. In  practice, however, 
this would present a formidable task  and  furthermore, one 
is  not usually concerned with a precise distribution of I: in 
(cos kh). A  great deal of improvement, in terms of the 
desired smoothing end-product, is  obtained by combining 
only two smoothing elements. At  the  Joint Numerical 
Weather Prediction (JNWP)  Unit, we have  not found it 
necessary as  yet  to go beyond a combination of three 
smoothing elements. Our most frequently used multi- 
element operator will be described in section 5. 

4. SMOOTHING IN TWO DIMENSIONS 

Extension of the theory  to two dimensions may be ac- 
complished in two ways. First, one may smooth in each 
dimension, independently of the  other dimension. I t  
can be shown that  the final result is independent of the 
dimension in which one first smooths, and is also  inde- 
pendent of the order in which one applies the smoothing 
elements. Adopting the view that such an extension of a 
smoothing element to two dimensions is really the applica- 
tion of two smoothing elements, one in each dimension, 
the two elements may be combined into a single 9-point 
operator. 

~ o = ~ o + - ~ ( ~ - - V ) ( ~ ~ + ~ ~ + ~ ~ + ~ S - ~ ~ O ) +  
1 
2 

1 
- ~ ( Z I + ~ ~ + Z S + Z . I - ~ Z O )  4 (5) 
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The  subscripts refer to mesh points  in figure 2, v being the 
index of the two smoothing elements, one applied in each 
dimension. 

If, for convenience, we consider the  function z (2, y) to 
be composed  of the sum of two-dimensional trigonometric 
components of form 

z(z,y)=C+A cos r(z-5) cos s ( p " ) ,  (6) 

the  ratio of smoothed to unsmoothed amplitudes  is 

LT 
A- fT=-"1-u(1-cos rh)][l-v(1-cos sh)]. 

Since each of the two factors  is of the form of the  right 
hand side of equation (3), each factor  may be evaluated 
by means of figure 1. 

The second way of extending the theory  to two dimen- 
sions is through the 5-point operator, 

- 1 
zo=z0+, ~ ( z 2 + z ~ + ~ ~ + z 8 " 4 z 0 )  (7) 

An analysis of the effect of such an operator  on  a compo- 
nent (6) reveals that  the ratio of the smoothed to un- 
smoothed amplitudes  is 

g=-=l- f u [1-&0s rh+cos sh) 1 
Thus, if we  were to replace the ordinate (cos  kh) in figure 

1 by  cos rh+cos sh), the figure would then  apply  to  the 

5-point operator (7). 
If the component (6) represented a "wiggle" in one 

dimension only, (e. g., r=O, s=2?r/2h) the 9-point operator 
(5 )  with v=0.5  would eliminate it, treating it as a one- 
dimensional element would treat  it.  The 5-point operator 
(7), on the other  hand, would reduce it  by only one-half 
treating it as a one-dimensional operator would treat a 
component of wave number k=21/4h.. Because of this 
characteristic of the &point  operator, we have found 
little  use for it. We use almost exclusively combinations 
of 9-point operators. 

The extensions to two dimensions described here have 
obvious analogues in extensions to spaces of more than 
two dimensions. 

1 

5. COMPLEX SMOOTHING ELEMENT INDICES 

There is nothing  in the theory which rules out complex 
indices. A combination of two smoothing elements is 
equivalent to a single 51point one-dimensional smoothing 
operator. If the two smoothing elements have conjugate 
complex indices, the weights a t  the five points will  be real. 
Conversely, any 5-point one-dimensional operator is 
equivalent to a combination of two smoothing elements. 
Acceptance of complex indices into  the theory merely 
allows this converse to be perfectly general. 
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FIGURE 2.-The 9-point mesh. X 

The multi-element operator  in  most  frequent use at  
the JNWP Unit coesists of an element with a real index, 
and two elements with conjugate complex indices; i. e., 

~o=O.49965 
u1=-O.22227+0.6424Oi (8) 
v2=-O.22227-0.6424Oi 

A 3-element operator allows the specification of three 
characteristics of the curve of 2 against (cos kh). In  
practice, we have specifications which are  not precisely 
stated, so cannot be handled easily by rigorous mathe- 
matical methods. 

For example, we want  our  operational smoothing oper- 
ator  to severely suppress the  short waves  while retaining 
essentially unchanged the longer waves. By combining 
algebraic and graphical techniques, we have arrived at 
the three elements whose indices (8) are recorded above, 
and whose  effects are displayed graphically in figure 3. 
Figure 3 shows the result of both one pass and thirty-two 
passes, the  latter  to bring out clearly the form for the 
longer wavelengths. 

Complex indices always appear  in conjugate pairs, 
otherwise the multi-element operator would result in 
imaginary components. Conjugate complex  pairs of 
9-point operators require smoothing on the boundary for 
the same reason. We apply  the corresponding one- 
dimensional elements to  the  boundary, so that in the 
case of a rectangular grid only the four corner points 
remain unchanged. 

When one comes to programming for automatic com- 
puting  machinery, the question arises as  to whether to 
perform one scan for each element in a multi-element 
operator, or to combine the elements into one large 
smoothing operator. In  the case of the  operator cited 
above, if the elements were combined into one large 
operator, it would be applied to a 7  x  7 mesh of 49 points. 
More importantly,  there would be 10 classes of central 

- 
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FIGURE 3.-The ratio, 2, of smoothed to unsmoothed amplitude 
after N smoothings with  the multi-element operator whose 
smoothing  element  indices are v0=0.49965, vl= -0.22227f 
0.642403, vq= -0.22227-0.642402'. 

points, each requiring different treatment.  For  this 
reason we believe the  advantage lies in performing one 
scan for each element, the one utility program then 
handling all multi-element operators for a given grid. 

Examples of the application of the smoothing operator 
represented by  the indices (8) will be given in the next 
section. 

6. INVERSION OF THE BALANCE EQUATION FOR THE 
GEOPOTENTIAL 

The one area  in which we have found smoothing man- 
datory in the interest of accuracy is in connection with 
the inversion of the balance equation (Shuman [2]), 

FIGURE 4.-The predicted field of ?gg-$b 72 hours  after 0300 GYT, 
April 26, 1956, smoothed 3 times  with  the multi-element oper- 
ator (8). Contours are labeled  in tens of feet. 

FIGURE 5.-The predicted field of z 72 hours after 0300 GMT, April 
26, 1956, inverted from the balance equation  and  the smoothed 
field of $ depicted in figure 4. Contours  are labeled  in tens of 
feet. 

whcre z is the height of the 500-mb. contour, $ is the stream 
function for the winds at  500 mb., g is gravitational 
acceleration, f is the Coriolis parameter. Figure 4 shows 
a 72-hr. barotropic prediction of the $-field made with 
wind fields  which satisfy  the balance equation. Figure 4 
is  the predicted +field after being smoothed three times 
with the operator (8). The +field  before smoothing is 
not shown, but  the differences between the smoothed and 
nonsmoothed fields are  portrayed by  the lighter curves of 
figure 6. Only the zero isopleth is shown. The sense 
(plus or minus) of the differences is not indicated, since it 
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FIGURE 6.-The light curves are  the zero isopleth  depicting the 
choppy field of the differences between the $-field of figure 4 
before and  after smoothing. The  heavy curves depict  the 
large-scale effect of smoothing the $-field, on  the z-field implied 
by  the balance  equation. The smoothed $-field implies a 
z-field generally higher than  the unsmoothed $-field. Contours 
are labeled in tens of feet. 

is of no  particular  interest. The important character- 
istics of the difference  field to be noted are its raggedness, 
or choppiness, and  its lack of consistency in the sense 
that its mean value is not different from zero. 

Figure 5 is the solution of the balance equation (9) for z, 
with # taken  as the smoothed field of $ (fig. 4). The 
balance equation was  also inverted for z with $ taken as 
the $-field  before smoothing. The  latter result is not 
shown, but  the differences between the two z-fields are 
shown by  the  smooth heavier set of curves in figure 6. 

Figure 6 shows that a high-frequency change in the 
#-field implies a  very low-frequency change in  the z-field 
through the balance equation (at least  through our finite- 
difference version of it). This  result  must be due to the 
non-linearity of the balance equation  in $. 
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